بستن پنجره
فرادرس - مجموعه آموزش‌های ویدئویی  مهندسی کامپیوتر - طراحی الگوریتم - ساختمان داده
بستن پنجره     از آخرین نوشته‌ها

»    مسابقه‌ی برنامه‌نویسی آنلاین Educational Codeforces Round 20

»    مسأله‌ی Encrypted SMS

»    ویدئوهای آموزشی کلاس Programming Challenges  

بستن پنجره
وبگاه
این صفحه
اشتراک‌گذاری در LinkedIn     Cloob     اشتراک‌گذاری در Twitter
اشتراک‌گذاری در Facebook     ارسال با Telegram     Google Plus
بستن پنجره
وبگاه     این صفحه
اشتراک‌گذاری در LinkedIn     Cloob     اشتراک‌گذاری در Twitter     اشتراک‌گذاری در Facebook     ارسال با Telegram     Google Plus

مسأله‌ی انتخابات

[برو به فهرست نوشته‌ها]
        بررسی مسأله‌ی انتخابات، از سوالات مسابقه‌ی برنامه‌نویسی ACM-ICPC 2016  سایت تهران

مسأله

    جناب خان که با کسب و کار لبوی خود میلیاردر شده است، می‌خواهد رئیس جمهور شود! در کشور او که از چندین ایالت تشکیل شده است، از روشی با عنوان هیئت انتخاب (یا هیئت الکترال) برای انتخاب رئیس جمهور استفاده می‌شود. در چنین ساختاری شمارش رأی در هر ایالت به صورت مستقل انجام می‌شود و هر ایالت متناسب با جمعیت خود تعدادی نماینده در هیئت انتخاب کنندگان رئیس جمهور دارد. تمام نمایندگان یک ایالت در نهایت به نامزدی رأی می‌دهند که در آن ایالت اکثریت آرا را کسب کرده باشد. اگر نامزدها رأی برابر داشته باشند، هر ایالت قوانین خاص خود برای انتخاب نهایی را دارد. در نهایت رئیس جمهور کسی است که بیش از نصف مجموع رأی‌های هیئت انتخاب را از آن خود کند.

ادامه ...

مسأله‌ی اعداد اردوش

[برو به فهرست نوشته‌ها]
        بررسی مسأله‌ی اعداد اردوش (Erdos Numbers)  یا فاصله‌ی همکاری اردوش از سوالات آمادگی مسابقات برنامه‌نویسی

مسأله

    پل اردوش (اردیش - Paul Erdős ) ریاضیدان مشهور و برجسته‌ی قرن بیستم است که تا پایان عمر خود تلاش گسترده‌ای برای انتشار مقالات علمی داشت و همکاری با وی در انتشار مقاله یک افتخار بزرگ برای هر ریاضیدان محسوب می‌گردد.

    با توجه به آنکه همکاری با ایشان برای هر کس ممکن نبود، تلاش می‌کردند با نفراتی در انتشار مقاله‌ی علمی همکاری کنند که با این دانشمند بزرگ مقاله داشتند. این رویکرد باعث پدید آمدن عدد اردوش (Erdős number)  یا فاصله‌ی همکاری اردوش شد؛ یعنی برای نویسندگانی که به صورت مستقیم با ایشان همکاری داشتند عدد 1  و برای کسانی که با این نفرات مقاله داشتند عدد 2  نسبت داده شد و ارتباطات دورتر نیز به همین ترتیب با اعداد طبیعی بعدی مشخص شدند.

ادامه ...

دنباله‌ی اعداد فیبوناچی

[برو به فهرست نوشته‌ها]
        بررسی الگوریتم‌های محاسبه‌ی دنباله‌ی اعداد فیبوناچی و کارایی آنها

بسیاری از فرآیندهای طبیعی از جمله ترکیب ساختار بدن موجودات زنده نظم مشخصی دارند و از دنباله‌ی اعدادی تبعیت می‌کنند که امروزه با نام دنباله‌ی اعداد فیبوناچی (فیبوناتچی - Fibonacci)  شناخته می‌شود. مشهورترین خاصیت این اعداد نسبت دو جمله‌ی متوالی آنها به ازای جملات بزرگ دنباله است که به عدد طلایی مشهور است.

    این دنباله از جمله دنباله‌های عددی است که در طراحی سوالات مسابقات برنامه‌نویسی نیز استفاده می‌شود و گاهی در حل سوالات کاربرد دارد. از این رو آشنایی با روش‌های مختلف تولید جملات آن حائز اهمیت است.

    تعریف: دنباله‌ی اعداد فیبوناچی روی اعداد حسابی به صورت زیر تعریف می‌شود:

\[ F_n= \left \{\begin{matrix} F_{n-1} + F_{n-2} & & & \; n > 1\\ 1 & & & \; n = 1 \\ 0 & & & n = 0 \end{matrix}\right. \]  

ادامه ...

الگوریتم فلوید-وارشال

[برو به فهرست نوشته‌ها]
        آشنایی با الگوریتم فلوید-وارشال برای یافتن کوتاهترین مسیرهای گراف با قطعه کد نمونه به زبان برنامه‌نویسی ++C

الگوریتم فلوید-وارشال (Floyd-Warshall)  یک الگوریتم مبتنی بر روش برنامه‌نویسی پویا برای محاسبه‌ی کوتاهترین مسیر بین هر دو جفت گره گراف‌های وزن‌دار است. دو الگوریتم رایج دایکسترا و بلمن-فورد روش‌های محاسبه‌ی کوتاهترین مسیر از مبدأ ثابت هستند که در صورت تکرار آنها به ازای هر گره عملکردی همانند الگوریتم فلوید-وارشال دارند. اما این الگوریتم ویژگی‌هایی دارد که آن را برجسته می‌کند:

ادامه ...

دنباله‌ی اعداد کاتالان و محاسبه‌ی آن

[برو به فهرست نوشته‌ها]
        آشنایی با دنباله‌ی عددی کاتالان، کاربردها و روش پیاده‌سازی آن به زبان برنامه‌نویسی ++C

دنباله‌ی اعداد کاتالان (Catalan Numbers)  یکی از دنباله‌های عددی مشهور ریاضیات است که برای عدد نامنفی n  به صورت $C_n$  نمایش داده می‌شود.

  

$C_n:\qquad 1,\;1,\;2,\;5,\;14,\;42,\;132,\;429,\;1430,\;4862,\;16796,\;\cdots$

  

    این دنباله کاربردهای بسیاری در مسائل شمارشی دارد. از جمله:

    1-  تعداد درخت‌های دودویی با n  رأس داخلی برابر $C_n$  است:

      

اعداد کاتالان و درخت دودویی

ادامه ...

محاسبه‌ی ضرایب دوجمله‌ای

[برو به فهرست نوشته‌ها]
        بررسی روش‌های مختلف محاسبه‌ی ضرایب دوجمله‌ای نیوتن یا ترکیب دو عدد با قطعه کد به زبان برنامه‌نویسی ++C

تعریف ترکیب (Combination)

    تعداد حالت‌های انتخاب r ( عدد صحیح و نامنفی) شیء از n ( عدد صحیح و بزرگتر یا مساوی r)  شیء را که ترتیب انتخاب اهمیت نداشته باشد، انتخاب r  از n  یا ترکیب r  روی n  گویند و به یکی از صورت‌های زیر نمایش می‌دهند:

      

\[C(n,r) = C_r^n= \begin{pmatrix} n \\ r \end{pmatrix} \]  

    این عدد به ضریب دوجمله‌ای نیز مشهور است که یکی از محل‌های استفاده‌ی آن است.

    بر اساس اصل ضرب از اصول شمارش، ترکیب دو عدد از رابطه‌ی زیر قابل محاسبه است:

      

\[\begin{pmatrix} n \\ r \end{pmatrix} = \frac{n!}{(n-r)!\cdot r!} \]  

ادامه ...

ضرب زنجیره‌ای ماتریس‌ها

[برو به فهرست نوشته‌ها]
        بحث در مورد ضرب زنجیره‌ای ماتریس‌ها و روش پیاده‌سازی الگوریتم پرانتزبندی بهینه‌ی آن با روش تقسیم و حل و روش برنامه‌نویسی پویا

مسأله‌ی ضرب زنجیره‌ای ماتریس‌ها و پرانتزبندی بهینه‌ی آن یکی از مثال‌های مشهور کاربرد برنامه‌نویسی پویا در حل مسائل بهینه‌سازی است.

    فرض کنید قصد داریم حاصلضرب عبارت ماتریسی $ A_{3 \times 7} \times B_{7 \times 8 } \times C_{8 \times 4} $  را محاسبه کنیم. می‌دانیم که ضرب ماتریس‌ها خاصیت شرکت‌پذیری داشته، اما خاصیت جابجایی ندارد. بنابراین رعایت ترتیب ضرب آنها مهم است. پرانتزبندی‌های مختلف ضرب ماتریس‌ها حالت‌های مختلف محاسبه آن را به ما می‌دهند:

      

\[1: A \times (B \times C) \]

\[2: (A \times B) \times C \]

      

    در حالت اول ابتدا B  در C  ضرب شده و سپس حاصل آنها در A ضرب می‌شود؛ و در حالت دوم ابتدا A  و B  در هم ضرب شده و سپس نتیجه در C  ضرب می‌شود. حال سوال این است که آیا این پرانتزبندی‌ها تفاوتی با هم دارند؟

ادامه ...

روش برنامه‌نویسی پویا

[برو به فهرست نوشته‌ها]
        آشنایی با روش برنامه‌نویسی پویا (یا برنامه‌ریزی پویا، برنامه‌سازی پویا - Dynamic Programming)  به عنوان یکی از روش‌های پر کاربرد طراحی الگوریتم برای حل بهینه‌ی مسائل با مثالی از محاسبه‌ی دنباله‌ی فیبوناچی

یکی از روش‌های پرکاربرد و مشهور طراحی الگوریتم روش برنامه‌نویسی پویا (یا برنامه‌ریزی پویا، برنامه‌سازی پویا - Dynamic Programming)  است. این روش همچون روش تقسیم و حل (Divide and Conquer)  بر پایه‌ی تقسیم مسأله بر زیرمسأله‌ها کار می‌کند. اما تفاوت‌های چشم‌گیری با آن دارد.

    زمانی که یک مسأله به دو یا چند زیرمسأله تقسیم می‌شود، دو حالت ممکن است پیش بیاید:

    1-  داده‌های زیرمسأله‌ها هیچ اشتراکی با هم نداشته و کاملا مستقل از هم هستند. نمونه‌ی چنین مواردی مرتب‌سازی آرایه‌ها با روش ادغام یا روش سریع است که داده‌ها به دو قسمت تقسیم شده و به صورت مجزا مرتب می‌شوند. در این حالت داده‌های یکی از بخش‌ها هیچ ارتباطی با داده‌های بخش دیگر نداشته و در نتیجه حاصل از آن بخش اثری ندارند. معمولا روش تقسیم و حل برای چنین مسائلی کارآیی خوبی دارد.

ادامه ...