بستن پنجره
فرادرس - مجموعه آموزش‌های ویدئویی  مهندسی کامپیوتر - طراحی الگوریتم - ساختمان داده
بستن پنجره     از آخرین نوشته‌ها

»    مسابقه‌ی برنامه‌نویسی آنلاین 20 Quera

»    دوره‌ی طراحی و تحلیل الگوریتم دانشگاه استنفورد

»    مسأله‌ی انتخابات

بستن پنجره
وبگاه
این صفحه
اشتراک‌گذاری در LinkedIn     Cloob     اشتراک‌گذاری در Twitter
اشتراک‌گذاری در Facebook     ارسال با Telegram     Google Plus
بستن پنجره
وبگاه     این صفحه
اشتراک‌گذاری در LinkedIn     Cloob     اشتراک‌گذاری در Twitter     اشتراک‌گذاری در Facebook     ارسال با Telegram     Google Plus

دنباله‌ی اعداد فیبوناچی

[برو به فهرست نوشته‌ها]
        بررسی الگوریتم‌های محاسبه‌ی دنباله‌ی اعداد فیبوناچی و کارایی آنها

بسیاری از فرآیندهای طبیعی از جمله ترکیب ساختار بدن موجودات زنده نظم مشخصی دارند و از دنباله‌ی اعدادی تبعیت می‌کنند که امروزه با نام دنباله‌ی اعداد فیبوناچی (فیبوناتچی - Fibonacci) شناخته می‌شود. مشهورترین خاصیت این اعداد نسبت دو جمله‌ی متوالی آنها به ازای جملات بزرگ دنباله است که به عدد طلایی مشهور است.

    این دنباله از جمله دنباله‌های عددی است که در طراحی سوالات مسابقات برنامه‌نویسی نیز استفاده می‌شود و گاهی در حل سوالات کاربرد دارد. از این رو آشنایی با روش‌های مختلف تولید جملات آن حائز اهمیت است.

    تعریف: دنباله‌ی اعداد فیبوناچی روی اعداد حسابی به صورت زیر تعریف می‌شود:

\[ F_n= \left \{\begin{matrix} F_{n-1} + F_{n-2} & & & \; n > 1\\ 1 & & & \; n = 1 \\ 0 & & & n = 0 \end{matrix}\right. \]

ادامه ...

الگوریتم جستجوی اول عمق (DFS)

[برو به فهرست نوشته‌ها]
        معرفی الگوریتم جستجوی اول عمق (DFS) برای پیمایش گراف و کاربردهای آن به همراه قطعه کد به زبان برنامه‌نویسی ++C

الگوریتم جستجوی اول عمق (Depth First Search - DFS) الگوریتمی مشابه الگوریتم جستجوی اول سطح (BFS) برای پیمایش گراف است. این دو الگوریتم خواص و کاربردهای مشترک بسیاری دارند و تفاوت اصلی در این است که در هر تکرار الگوریتم DFS تنها یکی از گره‌های مجاور گره پردازش شده برای مرحله‌ی بعد انتخاب می‌شود. به این ترتیب، الگوریتم DFS به جای صف از یک پشته برای مشخص کردن مسیر پیمایش استفاده می‌کند.

    الگوریتم DFS با فرض انتخاب گره مبدأ به عنوان گره جاری از مراحل زیر تشکیل یافته است:

    1- گره جاری را به پشته اضافه کن.

ادامه ...

الگوریتم فلوید-وارشال

[برو به فهرست نوشته‌ها]
        آشنایی با الگوریتم فلوید-وارشال برای یافتن کوتاهترین مسیرهای گراف با قطعه کد نمونه به زبان برنامه‌نویسی ++C

الگوریتم فلوید-وارشال (Floyd-Warshall) یک الگوریتم مبتنی بر روش برنامه‌نویسی پویا برای محاسبه‌ی کوتاهترین مسیر بین هر دو جفت گره گراف‌های وزن‌دار است. دو الگوریتم رایج دایکسترا و بلمن-فورد روش‌های محاسبه‌ی کوتاهترین مسیر از مبدأ ثابت هستند که در صورت تکرار آنها به ازای هر گره عملکردی همانند الگوریتم فلوید-وارشال دارند. اما این الگوریتم ویژگی‌هایی دارد که آن را برجسته می‌کند:

ادامه ...

الگوریتم جستجوی اول سطح (BFS)

[برو به فهرست نوشته‌ها]
        معرفی الگوریتم جستجوی اول سطح (BFS) برای پیمایش گراف و کاربردهای آن به همراه قطعه کد به زبان برنامه‌نویسی ++C

الگوریتم پیمایش اول سطح یا جستجوی اول سطح (Breadth First Search - BFS) از جمله الگوریتم‌های مشهور پیمایش و جستجوی گراف است که در حل مسائل الگوریتمی و هوش مصنوعی کاربرد دارد. این الگوریتم برای پیمایش و جستجوی گراف از یک صف برای نگهداری ترتیب جستجو استفاده می‌کند.

    الگوریتم BFS با وارد کردن گره مبدأ به صف پردازش شروع شده و تا خالی نشدن این صف مراحل زیر را تکرار می‌شود:

    1- عنصر جلوی صف را به عنوان گره جاری انتخاب و از صف حذف کن.

    2- گره جاری را پردازش کن.

    3- گره‌های مجاور گره جاری که پردازش نشده و در صف پردازش نیز قرار ندارند به این صف اضافه کن.

    منظور از پردازش، هر عملی روی گره است که پیمایش یا جستجو به آن نیت صورت گرفته است.

ادامه ...

الگوریتم دایکسترا

[برو به فهرست نوشته‌ها]
        آشنایی با الگوریتم دایکسترا برای یافتن کوتاهترین مسیر تک‌مبدأ در گراف وزن‌دار بدون یال منفی با قطعه کد به زبان ++C

الگوریتم دایکسترا (دیکسترا، دایجسترا - Dijkstra) یک راهکار حریصانه برای یافتن کوتاهترین مسیر از مقصد ثابت (تک منبع) به سایر گره‌های گراف وزن‌دار است. این گراف می‌تواند معرف مسیرهای یک شهر و تقاطع‌های آن باشد که انبار شرکت در یک گره آن قرار داشته و هدف یافتن کوتاهترین مسیر به هر محل دیگر از این انبار است. طبیعتا این الگوریتم در یافتن کوتاهترین مسیر بین دو گره مشخص نیز کاربرد دارد. تنها شرط لازم برای استفاده از این الگوریتم نامنفی بودن وزن یال‌های گراف است.

    الگوریتم دایکسترا به صورت حریصانه عمل کرده و در تکرارهای متوالی طول کوتاهترین مسیر از مبدأ به یکی از گره‌های گراف را به دست می‌آورد. در این الگوریتم از سه مجموعه استفاده می‌شود:

ادامه ...

روش حریصانه

[برو به فهرست نوشته‌ها]
        آشنایی با روش حریصانه و کاربردهای آن مانند مسأله‌ی خرد کردن پول

روش حریصانه (Greedy) یکی از روش‌های مشهور و پرکاربرد طراحی الگوریتم‌ها است که با ساختاری ساده در حل بسیاری از مسائل استفاده می‌شود. این روش اغلب در حل مسائل بهینه‌سازی استفاده شده و در پاره‌ای مواقع جایگزین مناسبی برای روش‌هایی مانند برنامه‌ریزی پویا است. در حالت کلی این روش سرعت و مرتبه‌ی اجرایی بهتری نسبت به روش‌های مشابه خود دارد؛ اما متناسب با مسأله ممکن است به یک جواب بهینه‌ی سراسری ختم نشود.

    در روش حریصانه رسیدن به هدف در هر گام مستقل از گام قبلی و بعدی است. یعنی در هر مرحله برای رسیدن به هدف نهایی، مستقل از این که در مراحل قبلی چه انتخاب‌هایی صورت گرفته و انتخاب فعلی ممکن است چه انتخاب‌هایی در پی داشته باشد، انتخابی که در ظاهر بهترین انتخاب ممکن است صورت می‌پذیرد. به همین دلیل است که به این روش، روش حریصانه گفته می‌شود. زمانی که یک دزد عجول و حریص وارد خانه‌ای می‌شود، در مسیر حرکت خود هر وسیله و کالای با ارزشی را داخل کیسه می‌اندازد. وی در این حالت چندان توجهی نمی‌کند که چه اشیائی را قبلا برداشته و ممکن است در آینده چه اشیاء گرانبهاتری به دست آورد. او در هر گام تنها از بین اشیاء دم دست خود با ارزش‌ترین آن را انتخاب کرده و به وسایل قبلی اضافه می‌کند.

ادامه ...

معمای هشت وزیر

[برو به فهرست نوشته‌ها]
        بررسی معمای هشت وزیر یا n وزیر و راهبرد عقبگرد برای حل مسأله

معمای هشت وزیر از جمله مسائل کلاسیک مباحث طراحی الگوریتم است که در حالت کلی‌تر با عنوان معمای n وزیر یا معمای چند وزیر مطرح می‌شود.

      

برای افرادی که با بازی شطرنج آشنایی ندارند

وزیر مهره‌ای از مهره‌های بازی شطرنج است که می‌تواند در تمامی هشت جهت به هر تعداد خانه - تا زمانی که مهره‌ای مانع نباشد - حرکت کند. اگر در این مسیرها مهره‌ای از حریف قرار گرفته باشد، آن مهره در معرض خطر حمله توسط وزیر قرار دارد؛ یا به اصطلاح وزیر آن مهره را تهدید می‌کند.

      

معمای هشت وزیر

ادامه ...

مرتب‌سازی هرمی

[برو به فهرست نوشته‌ها]
        آشنایی با روش مرتب‌سازی هرمی (Heap Sort)

مرتب‌سازی هرمی (Heap Sort) یکی از روش‌های مشهور مرتب‌سازی داده‌ها است که بر اساس خصوصیات درخت heap (هیپ، هرم یا کپه)  و عملکرد آن پیاده‌سازی شده است.

    بر اساس تعریف درخت heap، در یک max-heap (یا min-heap) بزرگترین (یا کوچکترین) مقدار بین داده‌ها همواره در ریشه‌ی درخت قرار دارد. یافتن بزرگترین (یا کوچکترین) عنصر بین عناصر، هزینه‌ی ثابت ( Ө( 1 دارد. با حذف این عنصر از درخت، بزرگترین (یا کوچکترین) عنصر بعدی مجددا در ریشه قرار می‌گیرد. به این ترتیب با حذف متوالی عناصر درخت heap و درج آنها در محل جدید، یک آرایه‌ی مرتب‌شده‌ی نزولی (یا صعودی) به دست خواهد آمد.

    به عنوان نمونه، min-heap زیر را در نظر بگیرید:

ادامه ...

مرتب‌سازی ادغامی

[برو به فهرست نوشته‌ها]
        آشنایی با روش مرتب‌سازی ادغامی با قطعه کدهایی به زبان برنامه‌نویسی ++C

روش مرتب‌سازی ادغامی (Merge Sort) یک روش مرتب‌سازی مبتنی بر مقایسه‌ی عناصر با استفاده از روش تقسیم و غلبه است. این روش از مراحل بازگشتی زیر تشکیل یافته است:

    1- آرایه را به دو زیرآرایه با اندازه‌ی تقریبا یکسان تقسیم کن.

    2- دو زیرآرایه را به روش مرتب‌سازی ادغامی مرتب کن.

    3- دو زیرآرایه‌ی مرتب‌شده را ادغام کن.

      

مرتب‌سازی ادغامی

ادامه ...

مرتب‌سازی سریع

[برو به فهرست نوشته‌ها]
        آشنایی با روش مرتب‌سازی سریع، همراه با قطعه کدهای نمونه به زبان برنامه‌نویسی ++C

روش مرتب‌سازی سریع (Quick Sort) یکی از الگوریتم‌های مشهور مرتب‌سازی داده‌ها است. این الگوریتم طی مراحل بازگشتی زیر یک روش تقسیم و غلبه برای مرتب کردن داده‌ها ارائه می‌نماید:

    1- انتخاب عنصر محوری: یکی از عناصر آرایه به عنوان عنصر محوری (pivot) - به عنوان مثال عنصر اول - انتخاب می‌شود.

    2- تقسیم آرایه: چینش عناصر آرایه به قسمی تغییر داده می‌شود که تمامی عناصر کوچکتر یا مساوی محور در سمت چپ آن و تمامی عناصر بزرگتر در سمت راست آن قرار بگیرند. این دو قسمت زیر آرایه‌های چپ و راست نامیده می‌شوند.

    3- مرتب‌سازی بازگشتی: زیرآرایه‌های چپ و راست به روش مرتب‌سازی سریع مرتب می‌شوند.

ادامه ...