الگوریتمستان

نوشته‌های یک علاقه‌مند به حوزه‌های برنامه‌نویسی، الگوریتم، حل مسئله و ریاضیات دوست داشتنی

 
در صورت ناخوانا بودن نوشته‌ها، از مرورگر دیگری استفاده کنید.
نوشته‌ها با برچسب محاسبات ریاضی نوشته‌ها با برچسب محاسبات ریاضی - الگوریتمستان الگوریتمستان الگوریتمستان
نوشته‌ها با برچسب «

محاسبات ریاضی

»
✤   سینوس و کسینوس را قورت بده

یکی از چالش‌های مهم دوران دبیرستان به یاد داشتن مقدار سینوس و کسینوس زوایای مشهور بوده و هست. در این راستا روش‌هایی مانند محاسبه به کمک دست و تا کردن انگشتان پیشنهاد شده است که هر کدام از انگشتان نماد یک زاویه هستند. اما چنین روش‌هایی خود نیازمند به یاد داشتن قوانین آن است که باعث بالا رفتن احتمال خطا می‌شود.

جدول زیر الگوی ساده‌ی موجود در مقدار سینوس و کسینوس زوایای مشهور را نشان می‌دهد که به سادگی در ذهن می‌ماند.

محاسبه‌ی سینوس و کسینوس زاویه‌های مشهور به روش ساده

ادامه ...
✤   دنباله‌ی اعداد فیبوناچی

بسیاری از فرآیندهای طبیعی از جمله ترکیب ساختار بدن موجودات زنده نظم مشخصی دارند و از دنباله‌ی اعدادی تبعیت می‌کنند که امروزه با نام دنباله‌ی اعداد فیبوناچی (فیبوناتچی - Fibonacci) شناخته می‌شود. مشهورترین خاصیت این اعداد نسبت دو جمله‌ی متوالی آنها به ازای جملات بزرگ دنباله است که به عدد طلایی مشهور است.

این دنباله از جمله دنباله‌های عددی است که در طراحی سوالات مسابقات برنامه‌نویسی نیز استفاده می‌شود و گاهی در حل سوالات کاربرد دارد. از این رو آشنایی با روش‌های مختلف تولید جملات آن حائز اهمیت است.

تعریف: دنباله‌ی اعداد فیبوناچی روی اعداد حسابی به صورت زیر تعریف می‌شود:

\[ F_n= \left \{\begin{matrix} F_{n-1} + F_{n-2} & & & \; n > 1\\ 1 & & & \; n = 1 \\ 0 & & & n = 0 \end{matrix}\right. \]

ادامه ...
✤   محاسبه‌ی فاکتوریل اعداد بزرگ

ما معمولا برای توضیح رشد با سرعت زیاد از عبارت «رشد نمایی» استفاده می‌کنیم. رشد نمایی یعنی هر گام که پیش می‌رویم، از گام $n$ به گام $n + 1$، اندازه دو یا هر چند برابری می‌شود که به آن پایه یا مبنای رشد گفته می‌شود. این پایه همیشه ثابت است؛ یعنی چه مرحله‌ی اول باشیم و چه مرحله‌ی هزارم، همیشه مرحله‌ی بعدی ضرب در عدد ثابتی می‌شود. در حالت کلی می‌توان نوشت:

\[ f(n ) = b \times f(n - 1 ),\; f(0) = c \]

که منظور از b همان پایه‌ی رشد است. مثلا اگر $b = 2$ باشد و $f(0 ) = 1$، به تابع $f(n) = 2^n$ می‌رسیم. این تعریف را با تعریف فاکتوریل مقایسه کنید:

ادامه ...
✤   کتاب Concrete Mathematics

کتاب Concrete Mathematics: A Foundation for Computer Science نوشته‌ای با موضوع مفاهیم اولیه‌ی ریاضیات پیوسته (CONtinuous mathematics) و ریاضیات گسسته (disCRETE mathematics) به قلم رونالد گراهام، دونالد کنوت و اُرِن پاتاشنیک - از دانشمندان بزرگ علوم ریاضیات و کامپیوتر - است . در این کتاب از بیان متفاوتی نسبت به نوشتار عموم کتاب‌های آموزش ریاضی استفاده شده و مفاهیم پایه‌ای محاسباتی علم کامپیوتر به زبان ساده و گیرا توضیح داده شده است. این مفاهیم پیش‌نیاز حل بسیاری از مسائل کامپیوتری، ریاضی و محاسبات علمی هستند. به همین دلیل، مطالعه‌ی آن به علاقه‌مندان برنامه‌نویسی، بویژه شرکت‌کنندگان المپیادهای کامپیوتری و مسابقات برنامه‌نویسی توصیه می‌شود.

ادامه ...
✤   دنباله‌ی اعداد کاتالان و محاسبه‌ی آن

دنباله‌ی اعداد کاتالان (Catalan Numbers) یکی از دنباله‌های عددی مشهور ریاضیات است که برای عدد نامنفی n به صورت $C_n$ نمایش داده می‌شود.

  

$C_n:\qquad 1,\;1,\;2,\;5,\;14,\;42,\;132,\;429,\;1430,\;4862,\;16796,\;\cdots$

  

این دنباله کاربردهای بسیاری در مسائل شمارشی دارد. از جمله:

1- تعداد درخت‌های دودویی با n رأس داخلی برابر $C_n$ است:

  

اعداد کاتالان و درخت دودویی

ادامه ...
✤   محاسبه‌ی ضرایب دوجمله‌ای

تعریف ترکیب (Combination)

تعداد حالت‌های انتخاب r (عدد صحیح و نامنفی) شیء از n (عدد صحیح و بزرگتر یا مساوی r) شیء را که ترتیب انتخاب اهمیت نداشته باشد، انتخاب r از n یا ترکیب r روی n گویند و به یکی از صورت‌های زیر نمایش می‌دهند:

  

\[C(n,r) = C_r^n= \begin{pmatrix} n \\ r \end{pmatrix} \]

این عدد به ضریب دوجمله‌ای نیز مشهور است که یکی از محل‌های استفاده‌ی آن است.

بر اساس اصل ضرب از اصول شمارش، ترکیب دو عدد از رابطه‌ی زیر قابل محاسبه است:

ادامه ...
✤   محاسبه‌ی دترمینان ماتریس

دترمینان ماتریس مربعی - که به صورت $ \vert A \vert $ یا $ det( A ) $ نمایش داده می‌شود - یکی از مفاهیم مشهور جبر خطی است که کاربردهای بسیاری در علوم مختلف دارد. امکان محاسبه‌ی سریع دترمینان یک ماتریس با ابعاد بزرگ بحث مهمی است که در ادامه سه روش محاسباتی رایج و پيچيدگي زمانی آنها مرور خواهند شد.

طبق تعریف دترمینان اگر اندازه‌ی ابعاد ماتریس مربعی یک باشد ($n = 1$)، دترمینان همان مقدار تک‌عضو آن است. یعنی:

  

\[ det( \begin{bmatrix} a \end{bmatrix} ) = \vert \begin{bmatrix} a \end{bmatrix} \vert = a \]

  

اما اگر مرتبه‌ی ماتریس بزرگتر از یک باشد ($n > 1$) دترمینان را به یکی از روش‌های زیر می‌توان محاسبه کرد.

ادامه ...
✤   ضرب استراسن

همه‌ی ما با تعریف ضرب ماتریس‌های مربعی آشنایی داریم. حاصلضرب ماتریس‌های مربعی A و B به صورت زیر تعریف می‌شود:

  

\[ A=(a_{ij})_{n \times n} = \qquad , \qquad B=(b_{ij})_{n \times n} \] \[ C = A \times B = (c_{ij})_{n \times n} \qquad ; \qquad c_{ij}= \sum_{k=1}^{n} a_{ik} \; b{kj} \]

  

به عنوان مثال در حالت $n = 2$ داریم:

  

\[ \begin{pmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12}\\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11}+a_{12}b_{21} & a_{11}b_{12}+a_{12}b_{22}\\ a_{21}b_{11}+a_{22}b_{21} & a_{21}b_{12}+a_{22}b_{22} \end{pmatrix} \]

ادامه ...
✤   ضرب زنجیره‌ای ماتریس‌ها

مسئله‌ی ضرب زنجیره‌ای ماتریس‌ها و پرانتزبندی بهینه‌ی آن یکی از مثال‌های مشهور کاربرد برنامه‌نویسی پویا در حل مسائل بهینه‌سازی است.

فرض کنید قصد داریم حاصلضرب عبارت ماتریسی $ A_{3 \times 7} \times B_{7 \times 8 } \times C_{8 \times 4} $ را محاسبه کنیم. می‌دانیم که ضرب ماتریس‌ها خاصیت شرکت‌پذیری داشته، اما خاصیت جابجایی ندارد. بنابراین رعایت ترتیب ضرب آنها مهم است. پرانتزبندی‌های مختلف ضرب ماتریس‌ها حالت‌های مختلف محاسبه آن را به ما می‌دهند:

  

\[1: A \times (B \times C) \]

\[2: (A \times B) \times C \]

  

در حالت اول ابتدا B در C ضرب شده و سپس حاصل آنها در A ضرب می‌شود؛ و در حالت دوم ابتدا A و B در هم ضرب شده و سپس نتیجه در C ضرب می‌شود. حال سوال این است که آیا این پرانتزبندی‌ها تفاوتی با هم دارند؟

ادامه ...
کمی آمار
  • عمر سایت:  ۴۵۷۱ روز
  • تعداد امتیاز ثبت شده:  ۳۲۷۵ امتیاز
  • میانگین امتیازها:  ۴.۲۵ از ۵.۰۰
  • بازدید امروز:  ۳۱۰ بازدید
  • بازدید ۲۴ ساعت گذشته:  ۱۰۹۵ بازدید
  • بازدید ۷ روز گذشته:  ۸۴۴۸ بازدید
  • بازدید ۳۰ روز گذشته:  ۳۷۵۳۴ بازدید
  • بازدید ۱ سال گذشته: ۴۲۲۱۱۶ بازدید
  • کل بازدیدها: ۴۸۱۴۵۱۲ بازدید
برچسب‌ها
#آمادگی مسابقه برنامه‌نویسی  #آموزش الگوریتم  #مسئله‌های الگوریتمی  #برنامه‌نویسی ++C  #الگوریتم  #نمونه سوالات مسابقه برنامه‌نویسی  #حل مسئله‌‌ی الگوریتمی  #برنامه‌نویسی  #منبع آموزشی  #حل سوالات مسابقات برنامه‌نویسی  #الگوریتم‌های تقسیم و غلبه  #نمونه سوال مسابقه ACM  #الگوریتم‌های برنامه‌نویسی پویا  #الگوریتم‌های بازگشتی  #کتاب الکترونیکی  #آموزش ساختمان داده‌ها  #تکنیک‌های طراحی الگوریتم  #محاسبات ریاضی  #گراف  #دانلود کتاب  #حل سوالات ACM-ICPC  #الگوریتم‌های مرتب‌سازی  #سوالات مسابقات ACM-ICPC  #Python  #پیمایش گراف  #ساختمان داده  #کتاب مسابقات برنامه‌نویسی  #الگوریتم‌های گراف  #حل سوالات UVa Online Judge  #الگوریتم‌های مسیریابی  #الگوریتم‌های حریصانه  #درخت‌ها  #سوالات UVa Online Judge  #جستجوی اول سطح  #ماتریس  #الگوریتم‌های کوتاهترین مسیر  #درخت پوشا  #الگوریتم دایکسترا  #ویدئوی آموزشی  #معرفی وب‌سایت  #الگوریتم فلوید-وارشال  #مسئله‌ی کوله‌پشتی  #جستجوی اول عمق  #کتابخانه قالب استاندارد ++C  #صف  #سوالات مسابقات برنامه‌نویسی بیان  #الگوریتم‌های عقبگرد  #حل سوالات Timus Online Judge