الگوریتمستان

یادداشت‌های یک معلم علاقه‌مند به نوشتن از آنچه آموخته و یاد می‌دهد
 

ماتریس

مسئله حداکثر مجموع

ماتریس مربعی با ابعاد $N$ در $N$ و درایه‌هایی از اعداد صحیح موجود است. منظور از زیرماتریس بیشینه، زیرماتریسی از ماتریس مفروض است که مجموع عناصر آن بزرگتر یا مساوی مجموع عناصر هر زیرماتریس دیگر آن است.

به عنوان مثال، برای ماتریس زیر:

  

محاسبه دترمینان ماتریس

دترمینان ماتریس مربعی - که به صورت $ \vert A \vert $ یا $ det( A ) $ نمایش داده می‌شود - یکی از مفاهیم مشهور جبر خطی است که کاربردهای بسیاری در علوم مختلف دارد. امکان محاسبه سریع دترمینان یک ماتریس با ابعاد بزرگ بحث مهمی است که در ادامه سه روش محاسباتی رایج و پیچیدگی زمانی آنها مرور خواهند شد.

الگوریتم ضرب استراسن

همه ما با تعریف ضرب ماتریس‌های مربعی آشنایی داریم. حاصلضرب ماتریس‌های مربعی A و B به صورت زیر تعریف می‌شود:

  

\[ A=(a_{ij})_{n \times n} \qquad , \qquad B=(b_{ij})_{n \times n} \] \[ C = A \times B = (c_{ij})_{n \times n} \qquad ; \qquad c_{ij}= \sum_{k=1}^{n} a_{ik} \; b{kj} \]

ضرب زنجیره‌ای ماتریس‌ها

مسئله ضرب زنجیره‌ای ماتریس‌ها و پرانتزبندی بهینه آن یکی از مثال‌های مشهور کاربرد برنامه‌نویسی پویا در حل مسائل بهینه‌سازی است.

فرض کنید قصد داریم حاصلضرب عبارت ماتریسی $ A_{3 \times 7} \times B_{7 \times 8 } \times C_{8 \times 4} $ را محاسبه کنیم. می‌دانیم که ضرب ماتریس‌ها خاصیت شرکت‌پذیری داشته، اما خاصیت جابجایی ندارد. بنابراین رعایت ترتیب ضرب آنها مهم است. پرانتزبندی‌های مختلف ضرب ماتریس‌ها حالت‌های مختلف محاسبه آن را به ما می‌دهند: