الگوریتمستان

یادداشت‌های یک معلم علاقه‌مند به نوشتن از آنچه آموخته و یاد می‌دهد
 

ریاضیات

واژه‌شناسی رمزنگاری

یکی از شاخه‌های مهم علم ریاضیات دوست‌داشتنی کاربرد آن در حوزه امنیت ارتباطات و اطلاعات است. استفاده از رمزنگاری در متون مهم و حساس قدمت زیادی دارد. در زمان سزار روم روشی برای رمزنگاری استفاده می‌شده که امروزه به روش رمزنگاری سزار مشهور است. در الگوریتم سزار به جای هر حرف از متن اصلی، سومین حرف بعد از این حرف در الفبای زبان را جایگزین می‌کردند. مثلا در زبان انگلیسی به جای A از D و به جای Y از B استفاده می‌شد.

الگوریتم‌های ریشه‌یابی

منظور از ریشه‌ها یک تابع مقادیری برای متغیرهای ورودی آن هستند که به ازای آنها خروجی تابع صفر شود. به عنوان مثال خروجی تابع $f(x)=2x-4$ به ازای $x=2$ صفر یا مقدار $2$ ریشه معادله $2x-4=0$ است. به همین ترتیب در مورد معادلات درجه دوم نیز می‌دانیم چطور می‌توانیم به ریشه یا ریشه‌ها در صورت موجود بودن دست پیدا کنیم. البته لزومی ندارد پاسخ معادله یک عدد صحیح یا گویای متناهی باشد. به عنوان مثل جواب معادله‌های $x^2 - 2 = 0$ و $sin(\frac{x}{2}) = 1$ به ترتیب اعداد گنگ $\sqrt{2}$ و $\pi$ هستند که در عمل امکان ذخیره‌سازی تک تک ارقام اعشاری در کامپیوتر وجود ندارد.

سینوس و کسینوس را قورت بده

یکی از چالش‌های مهم دوران دبیرستان به یاد داشتن مقدار سینوس و کسینوس زوایای مشهور بوده و هست. در این راستا روش‌هایی مانند محاسبه به کمک دست و تا کردن انگشتان پیشنهاد شده است که هر کدام از انگشتان نماد یک زاویه هستند. اما چنین روش‌هایی خود نیازمند به یاد داشتن قوانین آن است که باعث بالا رفتن احتمال خطا می‌شود.

محاسبه فاکتوریل اعداد بزرگ

ما معمولا برای توضیح رشد با سرعت زیاد از عبارت «رشد نمایی» استفاده می‌کنیم. رشد نمایی یعنی هر گام که پیش می‌رویم، از گام $n$ به گام $n + 1$، اندازه دو یا هر چند برابری می‌شود که به آن پایه یا مبنای رشد گفته می‌شود. این پایه همیشه ثابت است؛ یعنی چه مرحله اول باشیم و چه مرحله هزارم، همیشه مرحله بعدی ضرب در عدد ثابتی می‌شود. در حالت کلی می‌توان نوشت:

محاسبه دترمینان ماتریس

دترمینان ماتریس مربعی - که به صورت $ \vert A \vert $ یا $ det( A ) $ نمایش داده می‌شود - یکی از مفاهیم مشهور جبر خطی است که کاربردهای بسیاری در علوم مختلف دارد. امکان محاسبه سریع دترمینان یک ماتریس با ابعاد بزرگ بحث مهمی است که در ادامه سه روش محاسباتی رایج و پیچیدگی زمانی آنها مرور خواهند شد.