الگوریتمستان

برنامه‌نویسی، طراحی الگوریتم و حل مسئله‌های الگوریتمی

 
در صورت ناخوانا بودن نوشته‌ها، از مرورگر دیگری استفاده کنید.
نوشته‌ها با برچسب الگوریتم نوشته‌ها با برچسب الگوریتم - الگوریتمستان الگوریتمستان الگوریتمستان
نوشته‌ها با برچسب «

الگوریتم

»

دنباله‌ی اعداد کاتالان (Catalan Numbers) یکی از دنباله‌های عددی مشهور ریاضیات است که برای عدد نامنفی n به صورت $C_n$ نمایش داده می‌شود.

  

$C_n:\qquad 1,\;1,\;2,\;5,\;14,\;42,\;132,\;429,\;1430,\;4862,\;16796,\;\cdots$

  

این دنباله کاربردهای بسیاری در مسائل شمارشی دارد. از جمله:

1- تعداد درخت‌های دودویی با n رأس داخلی برابر $C_n$ است:

ادامه ...

روش مرتب‌سازی درجی (Insertion Sort) یکی از روش‌های مقدماتی مرتب‌سازی مبتنی بر مقایسه‌ی عناصر است که در مقایسه با روش‌های دیگر بیشتر مورد توجه قرار دارد.

قفسه‌ی کتابی را در نظر بگیرید که قصد دارید کتاب‌ها را بر اساس عنوان و به ترتیب حروف الفبا مرتب کنید. از یک سمت قفسه شروع به مرتب کردن می‌کنید. ابتدا کتاب دوم را با کتاب اول مقایسه کرده و در صورت لزوم جابجا می‌کنید. سپس کتاب سوم را از محل خود برداشته و در مقایسه با دو کتاب قبلی در محل مناسب قرار می‌دهید. به همین ترتیب کتاب‌های بعدی را نیز نسبت به کتاب‌های مرتب‌شده‌ی قبلی در محل مناسب درج می‌کنید تا به آخر قفسه برسید.

ادامه ...

تعریف ترکیب (Combination)

تعداد حالت‌های انتخاب r (عدد صحیح و نامنفی) شیء از n (عدد صحیح و بزرگتر یا مساوی r) شیء را که ترتیب انتخاب اهمیت نداشته باشد، انتخاب r از n یا ترکیب r روی n گویند و به یکی از صورت‌های زیر نمایش می‌دهند:

  

\[C(n,r) = C_r^n= \begin{pmatrix} n \\ r \end{pmatrix} \]

این عدد به ضریب دوجمله‌ای نیز مشهور است که یکی از محل‌های استفاده‌ی آن است.

ادامه ...

روش مرتب‌سازی انتخابی (Selection Sort) یکی از روش‌های اولیه‌ی مرتب‌سازی بر اساس مقایسه‌ی عناصر است. این الگوریتم طی چند مرحله عناصر لیست را به صورت صعودی یا نزولی مرتب می‌کند. به این ترتیب که در هر مرحله با بررسی عناصر نامرتب، بزرگترین (یا کوچکترین) عنصر را پیدا کرده و به انتهای لیست منتقل می‌کند.

لیست اعداد زیر را در نظر بگیرید که باید به صورت صعودی (کوچک به بزرگ) مرتب شود:

  

2 8 4 1 7

ادامه ...

یکی از روش‌های مرتب‌سازی، روش مرتب‌سازی حبابی (Bubble Sort) است که به آن روش تعویض استاندارد (Standard Exchange) نیز می‌گویند. این روش شامل چند مرحله است که در هر مرحله یک عنصر از لیست به طور قطع در محل مناسب خود قرار می‌گیرد.

لیست زیر را در نظر بگیرید که می‌خواهیم به صورت صعودی (از کوچک به بزرگ) مرتب کنیم:

  

4  3  8  1  6  2

  

ادامه ...

دترمینان ماتریس مربعی - که به صورت $ \vert A \vert $ یا $ det( A ) $ نمایش داده می‌شود - یکی از مفاهیم مشهور جبر خطی است که کاربردهای بسیاری در علوم مختلف دارد. امکان محاسبه‌ی سریع دترمینان یک ماتریس با ابعاد بزرگ بحث مهمی است که در ادامه سه روش محاسباتی رایج و پيچيدگي زمانی آنها مرور خواهند شد.

طبق تعریف دترمینان اگر اندازه‌ی ابعاد ماتریس مربعی یک باشد ($n = 1$)، دترمینان همان مقدار تک‌عضو آن است. یعنی:

  

ادامه ...

همه‌ی ما با تعریف ضرب ماتریس‌های مربعی آشنایی داریم. حاصلضرب ماتریس‌های مربعی A و B به صورت زیر تعریف می‌شود:

  

\[ A=(a_{ij})_{n \times n} = \qquad , \qquad B=(b_{ij})_{n \times n} \] \[ C = A \times B = (c_{ij})_{n \times n} \qquad ; \qquad c_{ij}= \sum_{k=1}^{n} a_{ik} \; b{kj} \]

  

به عنوان مثال در حالت $n = 2$ داریم:

  

\[ \begin{pmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12}\\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11}+a_{12}b_{21} & a_{11}b_{12}+a_{12}b_{22}\\ a_{21}b_{11}+a_{22}b_{21} & a_{21}b_{12}+a_{22}b_{22} \end{pmatrix} \]

ادامه ...

مسئله‌ی ضرب زنجیره‌ای ماتریس‌ها و پرانتزبندی بهینه‌ی آن یکی از مثال‌های مشهور کاربرد برنامه‌نویسی پویا در حل مسائل بهینه‌سازی است.

فرض کنید قصد داریم حاصلضرب عبارت ماتریسی $ A_{3 \times 7} \times B_{7 \times 8 } \times C_{8 \times 4} $ را محاسبه کنیم. می‌دانیم که ضرب ماتریس‌ها خاصیت شرکت‌پذیری داشته، اما خاصیت جابجایی ندارد. بنابراین رعایت ترتیب ضرب آنها مهم است. پرانتزبندی‌های مختلف ضرب ماتریس‌ها حالت‌های مختلف محاسبه آن را به ما می‌دهند:

  

\[1: A \times (B \times C) \]

ادامه ...

یکی از روش‌های پرکاربرد و مشهور طراحی الگوریتم روش برنامه‌نویسی پویا (یا برنامه‌ریزی پویا، برنامه‌سازی پویا - Dynamic Programming) است. این روش همچون روش تقسیم و حل (Divide and Conquer) بر پایه‌ی تقسیم مسئله بر زیرمسئله‌ها کار می‌کند. اما تفاوت‌های چشم‌گیری با آن دارد.

زمانی که یک مسئله به دو یا چند زیرمسئله تقسیم می‌شود، دو حالت ممکن است پیش بیاید:

1- داده‌های زیرمسئله‌ها هیچ اشتراکی با هم نداشته و کاملا مستقل از هم هستند. نمونه‌ی چنین مواردی مرتب‌سازی آرایه‌ها با روش ادغام یا روش سریع است که داده‌ها به دو قسمت تقسیم شده و به صورت مجزا مرتب می‌شوند. در این حالت داده‌های یکی از بخش‌ها هیچ ارتباطی با داده‌های بخش دیگر نداشته و در نتیجه حاصل از آن بخش اثری ندارند. معمولا روش تقسیم و حل برای چنین مسائلی کارآیی خوبی دارد.

ادامه ...

یکی از روش‌های پرکاربرد و محبوب برای طراحی الگوریتم‌ها روش Divide and Conquer است که در زبان فارسی به صورت تقسیم و حل یا تقسیم و غلبه ترجمه شده است.

در این روش، داده‌ها به دو یا چند دسته تقسیم شده و حل می‌شوند. سپس با ترکیب مناسب نتایج به دست آمده از این زیرمسئله‌ها، مسئله‌ی اصلی حل می‌شود. در صورتی که زیرمسئله خود به اندازه‌ی کافی بزرگ باشد، می‌توان از همین روش برای حل آن استفاده کرد. تقسیمات متوالی زیرمسئله‌ها تا جایی ادامه پیدا می‌کند که به اندازه‌ی کافی کوچک شده باشند و بتوان آنها را با روش‌های دیگر به راحتی حل نمود.

برای آشنایی بیشتر، چند الگوریتم که با روش حل و تقسیم پیاده‌سازی شده‌اند معرفی می‌شوند.

ادامه ...